Keywords: Atherosclerosis, HSP70, Nanoparticles, Andaliman, Zanthoxylum Acanthopodium DC


This study aims to determine the effect and potential mechanism with the treatment of nanoparticles from andaliman fruit
(Zanthoxylum acanthopodium DC.) As an anti-inflammatory in atherosclerosis through the HSP70 route. Method, andaliman
fruit dried in an oven at a temperature of 40ºC and powdered with nano technology using a High Energy Ballmill. This study
used 27 rat samples which were divided into 3 groups. The examination was carried out by routine histopathological
examination procedures for the assessment of atherosclerosis and immunohistochemistry HSP70. Assessment of HSP70
immunoreactive cells is indicated by the expression of cells that appear reddish brown in the intima and endothelial media of
blood vessels. The result, of the total 27 samples found 8 atherosclerosis (29.7%) and 19 did not experience atherosclerosis
(70.3%). The difference in HSP70 expression in the positive control group and the treatment group was statistically tested
with Chi Square and the result was p = 0.007 (p <0.05). Conclusion, the administration of Andaliman fruit nanoparticles has
an effect on the repair of blood vessel endothelium in atherosclerosis which is assessed by an increase in HSP70


Asbur, Y. dan Khairunnisyah 2018. Pemanfaatan andaliman (Zanthoxylum acanthopodium DC) sebagai tanaman penghasil
minyak atsiri. Jurnal Kultivasi, vol. 17(1). pp: 537–543.
Aziz, S. and Yadaf, K. S. 2016. Pathogenesis of atherosclerosis. Medical & Clinical Reviews, vol. 2(3):22. pp: 1-6.
Bielecka-Dabrowa, A., Barylski, M. and Mikhailidis, D. P 2009. HSP 70 and atherosclerosis – protector or activator ? Expert
Opin. Ther. Targets, vol. 13(3). pp: 307–317.
Bobryshev, Y. V., and Lord, R. S. A. 2002. Expression of heat shock protein–70 by dendritic cells in the arterial intima and its
potential significance in atherogenesis. Journal of Vascular Surgery, Vol. 35(2). pp: 368-375.
Chakraborty, R., Ankri, R., Leshem-Lev, D. et al. 2019. Hyperlipidemic mice as a model for a real-time in vivo detection of
atherosclerosis by gold nanorods-based diffusion reflection technique. Journal of Biophotonic. 12:e201800218.
Dulin, E., García-Barreno, P., and Guisasola, M. C. 2010. Extracellular heat shock protein 70 (HSPA1A) and classical
vascular risk factors in a general population. Cell Stress and Chaperones, vol. 15. pp: 929–937.
Frederick, S. J. 2005. Blood Vessels. In: Kumar, Abbas, Fausto. Robbins and Cotran Pathologic Basis of disease. 7th ed.
Elsevier Saunders, p: 516524.3.
Galovi´c, R., Flegar-Meˇstri´c, Z., Vidjak, V., Matokanovi´ c, M., and Bariˇsi´ c, K. 2015. Heat shock protein 70 and antibodies
to heat shock protein 60 are associated with cerebrovascular atherosclerosis. Clinical Biochemistry, doi:
Ghayour-Mobarhan, M., Rahsepar, A. A., Tavallaie, S., Rahsepar, S, and Ferns, G. A. 2009. The potential role of heat shock
proteins in cardiovascular disease: evidence from in vitro and in vivo studies. , Adv Clin Chem. vol. 48. pp: 27-72.
Harahap, U., Hasibuan, P.A.Z., Sitorus, P., Arfian, N. and Satria, D. 2018. Antimigration activity of an ethylacetate fraction
of Zanthoxylum acanthopodium DC. Fruits in 4T1 breast cancer cells. Asian Pac J Cancer Prev, vol. 19 (2). pp: 565-569.
Kampinga, H. H., Hageman, J., Vos, M. J., Kubota, H., Tanguay, R. M., Bruford, E. A., Cheetham, M. E., Chen, B and
Hightower, L. E. 2009. Guidelines for the nomenclature of the human heat shock proteins. Cell Stress and Chaperones, vol.
14. pp:105–111.
Korytowski, W., Wawak, K., Pabisz, P., Schmitt, J. C., Chadwick, A. C., Sahoo, D., and. Girotti, A. W. 2015. Impairment of
macrophage cholesterol efflux by cholesterol hydroperoxide trafficking: Implications for atherogenesis under oxidative stress.
Arterioscler Thromb Vasc Biol. vol. 35(10). pp: 2104–2113.
Kumar., Abbas., Fausto., Mitcheel. 2007. Robbins Basic Pathology. 8th edition. Elsevier. pp: 343-353. 2.
Laila, S, R., Astuti, D, A., Suparto, I, H., Handharyani, E. 2018. Kajian lesio aterosklerosis arteri perifer kaitannya dengan
faktor risiko pada hewan model macaca fascicularis yang diberi diet aterogenik IPB-1. IPB Scientific Repository.
Martien, R., Adhyatmika, I. D. K., Farida, V. and Sari, D. P. 2012. Technology developments nanoparticles as drug. Maj.Farm., vol. 8(1). pp: 133–144.
Ramadhani, N., dan Sumiwi, S.A. 2017. Aktivitas antiinflamasi berbagai tanaman diduga berasal dari flavonoid, Farmaka.
vol. 14. pp: 111–123.
Satria, D., Silalahi, J., Haro, G., Ilyas, S., Hasibuan, P. A. Z. 2019. Cell cycle inhibition of ethylacetate fraction of
Zanthoxylum acanthopodium DC. fruit against T47D cells. Macedonian Journal of Medical Sciences, vol. 7(5). pp: 726-729.
Wick, G., Jakic, B., Buszko, M., Wick, M. C. and Grundtman, C. 2014. The role of heat shock proteins in atherosclerosis.
Nature Reviews Cardiology. pp: 1-14.
Wijaya, C. H., Napitupulu, F. I., Karnady, V. and Indariani, S. 2019. A review of the bioactivity and flavor properties of the
exotic spice “andaliman” (Zanthoxylum acanthopodium DC.). Food Reviews International, vol. 35(1). pp: 1–19.
Yadav, A. K., Kumar, V., and Jha, V. 2013. Heat Shock Proteins 60 and 70 specific proinflammatory and cytotoxic
response of CD4+CD28null cells in chronic kidney disease. Mediators of Inflammation, vol. 2013, pp: 1-9.
Yanti, T, E, P., Nuriasari, N., and Juliana, K. 2011. Lemon pepper fruit extract (Zanthoxylum acanthopodium DC.)
suppresses the expression of inflammatory mediators in lipopolysaccharide-induced macrophages in vitro. American Journal
of Biochemistry and Biotechnology, vol. 7(4). pp: 190-195.
Zhu, J., Quyyumi, . A., Wu, H., Csako, G., Rott, D., Zalles-Ganley, A., Ogunmakinwa, J., Halcox, J. and Epstein, S. E. 2003.
Increased serum levels of Heat Shock Protein 70 are associated with low risk of coronary artery disease. Arterioscler Thromb
Vasc Biol. pp: 1055-1059.
Zininga, T., Ramatsui, L., and Shonhai, A. 2018. Heat Shock Proteins as immunomodulants. Molecules, vol. 23, 2846. pp: 1-